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ABSTRACT: 
 

Multi-level inverters (MLI) are gaining research interest for utilizing solar energy since they serves two important purpose of 

converting DC output generated into usable AC output and maintains the quality of power services. There are numerous 

research on-going related to the second aspects of inverters and they are popularly known as multi- functional inverters. In 

this paper a brief overview of multi-functional grid tied MLI has been briefly overviewed. The comparative analysis of 

available (MF-MLI) Multi-functional MLI has also been presented. 
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1. INTRODUCTION 

 
Solar systems generally employed as standalone system or grid connected inverters [1]. The standalone 

system generally supplies the local load like, rooftop system of remotely installed system where grid can’t be 

reached [4, 5].The grid connected system needs a proper synchronization to interact with the grid [2, 3].the 

profitability of such system is worthy when the communication and power flow is two way. Which means power 

can either be supplied or can be consumed when needed.The available grid interactive PV system can be as shown 

in Fig.1. Various architecture and control topologies have been proposed in literature on integration of wind and 

solar energy systems and their hybrid combinations for power quality improvement when operated in a stand-

alone as well as grid connected mode [6]-[8]. 

 

 
Fig. 1 Typical configuration of the grid interactive PV-system; (a)module inverter,(b) string inverter, 

(c) multi-string inverter,(d) central inverter. 
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2. MULTI FUNCTIONAL GRID INTERACTIVE MLI 

 
In medium and high-power range utilizations, MF-MLI with grid technology is a very efficient 

alternative as the heart of interfacing systems for integration of PV systems into utility grid. The 

unbeatable harmonic-spectrum, low voltage rating of the power switches, decreased common mode 

voltages and lesser voltage changes (dv/dt) are important advantages of ML-MFGCIs. However, the 

complexity of control method rises compared to the traditional two-level inverter. As illustrated in Fig. 

2, ML-MFGCIs can be classified based on the power circuit structure to mitigate PQproblems: (1) 

voltage source ML-MFGCIs and (2)current source ML-MFGCIs. 
 

Fig. 2 Classification of MF-MLI. 
 

2.1 Neutral point clamped (NPC-MF-MLI) 
 

The NPC is designed by a series combination of power switches whose connecting point is 

clamped by the combination of two diodes between consecutive pairs and the neutral point is clamped 

with the combination of capacitors as shown in fig.3 (a) [13]-[15]. The negative point of the upper 

inverter and the positive point of the lower one are assembled together to constitute the new phase 

output, while to make the neutral point N, the initial phase outputs are connected via two clamping 

diodes. These are efficient in applications operating at fundamental frequency switching [16]. 

2.2 Flying Capacitor (FC-MF-MLI) 
 

The structural combination of FCMLI is similar to NPCMLI only difference is that the 

diodes are replaced by capacitors as shown in fig. 3 (b). In this topology the load cannot be 

directly connected to the neutral, but, the zero level is achieved by connecting the load to the 

positive or negative side through the flying capacitor with opposite polarity with respectto 

the DC-link [17]. 
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2.3 Cascaded (C-MF-MLI) 
 

CHB-MFGCIs are composed of the series connection of two or more single phase H-bridge 

inverters as shown in Fig. 3(c). Each H-bridge inverter corresponds to two voltage source phase legs, 

where the line to line voltage is the inverter output voltage. Therefore, a single H-bridge inverter can 

generate three different voltage levels. To avoid DC-link capacitor being short circuits, each leg has two 

possible switching positions. The zero level can be obtained by connecting the phase outputs to the 

positive or the negative sides of the inverter. The comparison and functionality based on their 

classification is presented in table2. Table 1 presents the nomenclature for the table 2. 
 

Fig 3. Power circuit configuration of Three-level (a) NPC-MF-MLI, (b) FC-MF-MLII, (c) C- 

MF-MLII. 
 

Table 1. Abbreviations of MF-MLI configurations. 

 
Abbreviation Description 

VSMF-MLI Voltage source MF-MLI 

CSMF-MLI Current source MF-MLI 

NPC-MF-MLII Neutral point clamped MF-MLI 

ANPC-MF-MLI Active neutral point clamped MF-MLI 

DC-MF-MLI Diode clamped MF-MLI 

FC-MF-MLI Flying capacitor MF-MLI 

CHB-MF-MLI Cascaded H-bridge MF-MLI 

ACHB-MF-MLI Asymmetric cascaded H-bridge MF-MLI 

DVS-MF-MLI Dual voltage source MF-MLI 

PFC Power factor correction 

APF Active power filter 

 

 
Functionality Topology Levels number Control method 

APF,PFC 
[13] 

C-MF-MLI 7 - 

APF,PFC C-MF-MLI 11 Pq with PI and repetitive controller 
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[14]    

APF [15] C-MF-MLI 7 - 

PFC [16] Full bridge with auxiliary circuit 5 Digital PI current control algorithm 

PFC[17] C-MF-MLI 13 - 

PFC [18] AM-MFGCI 31 pq 

PFC [19] DCMF-MLI 3  

PFC [20] DCMF-MLI with second 
capacitive divider 

5 Digital PI current control algorithm 

PFC [21] C-MF-MLI 5 PI current control algorithm 

PFC [2]2 Full bridge with auxiliary circuit 5 Digital PI current control algorithm 

PFC [23] C-MF-MLI 5 PI and PR current control algorithm 

PFC [24] AC-MF-MLI 19 Average power control 

PFC [25] C-MF-MLI 3 Dual loop current controller 

PFC [26] C-MF-MLI 9 pq based a fully FLC without any 
PWM and PI controller 

PFC [27] M-MF-MLI 3 Dq current control 

APF,PFC 
[28] 

C-MF-MLI 21 pq 

APF,PFC 
[29] 

DVS-MF-MLI 3 PI base current control 

APF,PFC 
[30] 

NP C-MF-MLI 3 The pq theory (pq0-current control), 

 

3. CONCLUSION 

This paper present a brief overview of new type of MLI that is multifunctional MLI topology 

which serves PQ issues while integrating PV with the utility system. There are numerous research on- 

going related to the second aspects of inverters and they are popularly known as multi- functional 

inverters. In this paper a brief overview of multi-functional grid tied MLI has been briefly overviewed. 

The comparative analysis of available (MF-MLI) Multi-functional MLI has also been presented. 
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